Chapter 11 Vectors and the Geometry of Space

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

March 26, 2024

Table of Contents

(1) Surfaces in space
(2) Cylindrical and spherical coordinates

Table of Contents

(1) Surfaces in space

(2) Cylindrical and spherical coordinates

Cylindrical surfaces

- You have already known two special types of surfaces.
(1) Spheres: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$
(2) Planes: $a x+b y+c z+d=0$
- A third type of surface in space is called a cylindrical surface, or simply a cylinder.
- To define a cylinder, consider the familiar right circular cylinder shown in Figure 1.

Figure 1: Right circular cylinder: $x^{2}+y^{2}=a^{2}$. Rulings are parallel to the z-axis.

- You can imagine that this cylinder is generated by a vertical line moving around the circle $x^{2}+y^{2}=a^{2}$ in the $x y$-plane.
- This circle is called a generating curve for the cylinder, as indicated in the following definition.

Figure 2: Right cylinder. Rulings are perpendicular to the plane containing C.

Definition 11.1 (Cylinder)

Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and intersecting C is called a cylinder. C is called the generating curve (or directrix) of the cylinder, and the parallel lines are called rulings.

- For the right circular cylinder shown in Figure 1, the equation of the generating curve is

$$
x^{2}+y^{2}=a^{2} . \quad \text { Equation of generating curve in } x y \text {-plane }
$$

- To find an equation of the cylinder, note that you can generate any one of the rulings by fixing the values of x and y and then allowing z to take on all real values.
- In this sense, the value of z is arbitrary and is, therefore, not included in the equation. In other words, the equation of this cylinder is simply the equation of its generating curve.

$$
x^{2}+y^{2}=a^{2} \quad \text { Equation of cylinder in space }
$$

Definition 11.2 (Equation of cylinders)

The equation of a cylinder whose ruling are parallel to one of the coordinate axes contain only the variables corresponding to the other two axes.

Example 1 (Sketching a cylinder)

Sketch the surface represented by each equation.
a. $z=y^{2} \quad$ b. $z=\sin x, 0 \leq x \leq 2 \pi$.

Quadric surfaces

- The fourth basic type of surface in space is a quadric surface. Quadric surfaces are the three-dimensional analogs of conic sections.

Definition 11.3 (Quadric surface)

The equation of a quadric surface in space is a second-degree equation in three variables. The general form of the equation is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0
$$

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and hyperbolic paraboloid.

- The intersection of a surface with a plane is called the trace of the surface in the plane.
- To visualize a surface in space, it is helpful to determine its traces in some well-chosen planes. The traces of quadric surfaces are conics.
- These traces, together with the standard form of the equation of each quadric surface, are shown in the following tables.

	Ellipsoid$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$Trace $\frac{\text { Plane }}{\text { Ellipse }}$ Parallel to $x y$-plane Ellipse Parallel to $x z$-plane Ellipse Parallel to $y z$-plane The surface is a sphere if $a=b=c \neq 0$.	
	Hyperboloid of One Sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ $\begin{array}{ll} \text { Trace } & \text { Plane } \\ \text { Ellipse } & \text { Parallel to } x y \text {-plane } \\ \text { Hyperbola } & \text { Parallel to } x z \text {-plane } \\ \text { Hyperbola } & \text { Parallel to } y z \text {-plane } \end{array}$ The axis of the hyperboloid corresponds to the variable whose coefficient is negative.	
	Hyperboloid of Two Sheets$\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$Trace Ellipse Parallel to $x y$-plane Hyperbola Parallel to $x z$-plane Hyperbola Parallel to $y z$-plane The axis of the hyperboloid corresponds to the variable whose coefficient is positive. There is no trace in the coordinate plane perpendicular to this axis.	

	Elliptic Cone$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$Trace Ellipse Parallel to $x y$-plane Hyperbola Hyperbola Parallel to $x z$-plane Parallel to $y z$-plane The axis of the cone corresponds to the variable whose coefficient is negative. The traces in the coordinate planes parallel to this axis are intersecting lines.	
	Elliptic Paraboloid $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ The axis of the paraboloid corresponds to the variable raised to the first power.	
	Hyperbolic Paraboloid$z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$Trace Hyperbola Plane Parabola Parallel to $x y$-plane Parallel to $x z$-plane Parabola Parallel to $y z$-plane The axis of the paraboloid corresponds to the variable raised to the first power.	

Example 2 (Sketching a quadric surface)

Classify and sketch the surface given by

$$
4 x^{2}-3 y^{2}+12 z^{2}+12=0
$$

Hyperboloid of two sheets:

$$
\frac{y^{2}}{4}-\frac{x^{2}}{3}-z^{2}=1
$$

Figure 4: Hyperboloid of two sheets: $\frac{y^{2}}{4}-\frac{x^{2}}{3}-z^{2}=1$.

Example 3 (Sketching a quadric surface)

Classify and sketch the surface given by $x-y^{2}-4 z^{2}=0$.

Figure 5: Elliptic paraboloid.

Example 4 (A quadric surface not centered at the origin)

Classify and sketch the surface given by $x^{2}+2 y^{2}+z^{2}-4 x+4 y-2 z+3=0$.

Surfaces of revolution

- The fifth special type of surface you will study is called a surface of revolution. We now look at how to find its equation.
- Consider the graph of the radius function

$$
y=r(z) \quad \text { Generating curve }
$$

in the $y z$-plane.

- If this graph is revolved around the z-axis, it forms a surface of revolution.

- The trace of the surface in the plane $z=z_{0}$ is a circle whose radius is $r\left(z_{0}\right)$ and whose equation is

$$
x^{2}+y^{2}=\left[r\left(z_{0}\right)\right]^{2} . \quad \text { Circular trace in plane: } z=z_{0}
$$

- Replacing z_{0} with z produces an equation that is valid for all values of z.
- You can obtain equations for surfaces of revolution for the other two axes, and the results are summarized as follows.

Definition 11.4 (Surface of revolution)

If the graph of a radius function r is revolved about one of the coordinate axes, the equation of the resulting surface of revolution has one of the following forms.
(1) Revolved about the x-axis: $y^{2}+z^{2}=[r(x)]^{2}$
(2) Revolved about the y-axis: $x^{2}+z^{2}=[r(y)]^{2}$
(3) Revolved about the z-axis: $x^{2}+y^{2}=[r(z)]^{2}$

Example 5 (Finding an equation for a surface of revolution)

Find an equation for the surface of revolution formed by revolving (a) the graph of $y=1 / z$ about the z-axis and (b) the graph of $9 x^{2}=y^{3}$ about the y-axis.

Figure 6: Surface of revolution: $x^{2}+z^{2}=\frac{1}{9} y^{3}$ with generating curve $9 x^{2}=y^{3}$ about the y-axis.

Example 6 (Finding a generating curve for a surface of revolution)

Find a generating curve and the axis of revolution for the surface given by

$$
x^{2}+3 y^{2}+z^{2}=9
$$

Figure 7: Finding a generating curve for a surface of revolution: not unique.

Table of Contents

(1) Surfaces in space

(2) Cylindrical and spherical coordinates

Cylindrical coordinates

- The cylindrical coordinate system, is an extension of the polar coordinates in the plane to three-dimensional space.

Definition 11.5 (The cylindrical coordinate system)

In a cylindrical coordinate system, a point P in space is represented by an ordered triple (r, θ, z).
(1) (r, θ) is a polar representation of the projection of P in the $x y$-plane.
(2) z is the directed distance from (r, θ) to P.

- To convert from rectangular to cylindrical coordinates (or vice versa), use the following conversion guidelines for polar coordinates:

$$
\begin{aligned}
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z \\
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}, \quad z=z
\end{aligned}
$$

Figure 8: The relationship between cylindrical and rectangular coordinates.

- The point $(0,0,0)$ is called the pole.
- Moreover, because the representation of a point in the polar coordinate system is not unique, it follows that the representation in the cylindrical coordinate system is also not unique!

Example 1 (Converting from cylindrical to rectangular coordinates)

Convert the point $(r, \theta, z)=\left(4, \frac{5 \pi}{6}, 3\right)$ to rectangular coordinates.

Figure 9: Converting $(r, \theta, z)=\left(4, \frac{5 \pi}{6}, 3\right)$ to $(x, y, z)=(-2 \sqrt{3}, 2,3)$.

Example 2 (Converting from rectangular to cylindrical coordinate)

Convert the point $(x, y, z)=(1, \sqrt{3}, 2)$ to cylindrical coordinates.

Figure 10: Converting from rectangular to cylindrical coordinates.

- Cylindrical coordinates are especially convenient for representing cylindrical surfaces and surfaces of revolution with the z-axis as the axis of symmetry:

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& r=3
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=4 z \\
& r=2 \sqrt{z}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=z^{2} \\
& r=z
\end{aligned}
$$

$$
x^{2}+y^{2}-z^{2}=1
$$

$$
r^{2}=z^{2}+1
$$

Cylinder

Paraboloid

Cone

Hyperboloid

Figure 11: Different cylindrical equations.

- Vertical planes containing the z-axis and horizontal planes also have simple cylindrical coordinate equations:

Figure 12: Vertical plane: $\theta=c$ and horizontal plane: $z=c$.

Example 3 (Rectangular-to-cylindrical conversion)

Find an equation in cylindrical coordinates for the surface represented by each rectangular equation.
a. $x^{2}+y^{2}=4 z^{2} \quad$ b. $y^{2}=x$

Figure 13: Rectangular-to-cylindrical conversion.

Example 4 (Cylindrical-to-rectangular conversion)

Find an equation in rectangular coordinates for the surface represented by the cylindrical equation

$$
r^{2} \cos 2 \theta+z^{2}+1=0
$$

Figure 14: Cylindrical-to-rectangular conversion.

Spherical coordinates

- In the spherical coordinate system, each point is represented by an ordered triple: the first coordinate is a distance, and the second and third coordinates are angles.
- This system is similar to the latitude-longitude system used to identify points on the surface of Earth.
- For example, the point on the surface of Earth whose latitude is 40° North (of the equator) and whose longitude is 80° West (of the prime meridian) is shown in Figure 15. Assuming that the Earth is spherical and has a radius of 6371 kilometers, you would label this point as

Figure 15: Spherical coordinate of $80^{\circ} \mathrm{W} 40^{\circ} \mathrm{N}$ is $\left(4000,-80^{\circ}, 50^{\circ}\right)$.

Definition 11.6 (The spherical coordinate system)

In a spherical coordinate system, a point P in space is represented by an ordered triple (ρ, θ, ϕ).

1. ρ is the distance between P and the origin, $\rho \geq 0$.
2. θ is the same angle used in cylindrical coordinates for $r \geq 0$.
3. ϕ is the angle between the positive z-axis and the line segment $\overrightarrow{O P}$, $0 \leq \phi \leq \pi$.
Note that the first and third coordinates, ρ and ϕ, are nonnegative. ρ is the lowercase Greek letter rho, and ϕ is the lowercase Greek letter phi.

- The relationship between rectangular and spherical coordinates is illustrated in Figure 16.

Spherical coordinates
Figure 16: The relationship between rectangular coordinate (x, y, z) and spherical coordinates (ρ, θ, ϕ) where $r=\rho \sin \phi=\sqrt{x^{2}+y^{2}}$.

- To convert from one system to the other, use the following.
- Spherical to rectangular:

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

- Rectangular to spherical:

$$
\rho^{2}=x^{2}+y^{2}+z^{2}, \quad \tan \theta=\frac{y}{x}, \quad \phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) .
$$

- To change coordinates between the cylindrical and spherical systems, use the following.
- Spherical to cylindrical $(r \geq 0)$:

$$
r^{2}=\rho^{2} \sin ^{2} \phi, \quad \theta=\theta, \quad z=\rho \cos \phi .
$$

- Cylindrical to spherical $(r \geq 0)$:

$$
\rho=\sqrt{r^{2}+z^{2}}, \quad \theta=\theta, \quad \phi=\arccos \left(\frac{z}{\sqrt{r^{2}+z^{2}}}\right) .
$$

- The spherical coordinate system is useful primarily for surfaces in space that have a point or center of symmetry.
- For example, Figure 17 shows three surfaces with simple spherical equations.

Sphere:
$\rho=c$

Vertical half-plane: $\theta=c$

Figure 17: Three surfaces with simple spherical equations.

Example 5 (Rectangular-to-spherical conversion)

Find an equation in spherical coordinates for the surface represented by each rectangular equation.
a. Cone: $x^{2}+y^{2}=z^{2} \quad$ b. Sphere: $x^{2}+y^{2}+z^{2}-4 z=0$

Figure 18: $x^{2}+y^{2}+z^{2}-4 z=0$ in rectangular coordinate is equivalent to $\rho=4 \cos \phi$ in spherical coordinate.

